The structural and biochemical foundations of thiamin biosynthesis.
نویسندگان
چکیده
Thiamin is synthesized by most prokaryotes and by eukaryotes such as yeast and plants. In all cases, the thiazole and pyrimidine moieties are synthesized in separate branches of the pathway and coupled to form thiamin phosphate. A final phosphorylation gives thiamin pyrophosphate, the active form of the cofactor. Over the past decade or so, biochemical and structural studies have elucidated most of the details of the thiamin biosynthetic pathway in bacteria. Formation of the thiazole requires six gene products, and formation of the pyrimidine requires two. In contrast, details of the thiamin biosynthetic pathway in yeast are only just beginning to emerge. Only one gene product is required for the biosynthesis of the thiazole and one for the biosynthesis of the pyrimidine. Thiamin can also be transported into the cell and can be salvaged through several routes. In addition, two thiamin degrading enzymes have been characterized, one of which is linked to a novel salvage pathway.
منابع مشابه
Thiamin phosphate synthase: the rate of pyrimidine carbocation formation.
Carbocations have fascinated organic chemists for almost a century, and the properties of this reactive intermediate have been thoroughly studied.1 Carbocations have been proposed as intermediates in several enzyme-catalyzed reactions, such as the prenyl transfer and cyclization reactions involved in terpene biosynthesis,2,3 the pyrrole tetramerization involved in porphyrin biosynthesis,4 the g...
متن کاملThiamin biosynthesis: still yielding fascinating biological chemistry.
The present paper describes the biosynthesis of the thiamin thiazole in Bacillus subtilis and Saccharomyces cerevisiae. The two pathways are quite different: in B. subtilis, the thiazole is formed by an oxidative condensation of glycine, deoxy-D-xylulose 5-phosphate and a protein thiocarboxylate, whereas, in S. cerevisiae, the thiazole is assembled from glycine, NAD and Cys205 of the thiazole s...
متن کاملMolecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis
Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyon...
متن کاملA cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism.
Genes specifying the thiamin monophosphate phosphatase and adenylated thiazole diphosphatase steps in fungal and plant thiamin biosynthesis remain unknown, as do genes for ThDP (thiamin diphosphate) hydrolysis in thiamin metabolism. A distinctive Nudix domain fused to Tnr3 (thiamin diphosphokinase) in Schizosaccharomyces pombe was evaluated as a candidate for these functions. Comparative genomi...
متن کاملOrchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis.
Riboswitches are natural RNA elements that posttranscriptionally regulate gene expression by binding small molecules and thereby autonomously control intracellular levels of these metabolites. Although riboswitch-based mechanisms have been examined extensively, the integration of their activity with global physiology and metabolism has been largely overlooked. Here, we explored the regulation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of biochemistry
دوره 78 شماره
صفحات -
تاریخ انتشار 2009